• Visitors can check out the Forum FAQ by clicking this link. You have to register before you can post: click the REGISTER link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. View our Forum Privacy Policy.
  • Want to receive the latest contracting news and advice straight to your inbox? Sign up to the ContractorUK newsletter here. Every sign up will also be entered into a draw to WIN £100 Amazon vouchers!

Question For Mathematicians

Collapse
X
  •  
  • Filter
  • Time
  • Show
Clear All
new posts

    Question For Mathematicians

    Simple question fo mathematicians

    If x > 0 and y > 0

    How do you formally prove x+y > 0
    I'm alright Jack

    #2
    Originally posted by BlasterBates
    Simple question fo mathematicians

    If x > 0 and y > 0

    How do you formally prove x+y > 0
    You just did.

    Comment


      #3
      Originally posted by BlasterBates
      Simple question fo mathematicians

      If x > 0 and y > 0

      How do you formally prove x+y > 0
      I always hated pure Maths - applied is so much more fun

      Comment


        #4
        proof depends on what fields x and y belong to.

        Comment


          #5
          It's obvious, innit.
          Will work inside IR35. Or for food.

          Comment


            #6
            It will look something like this:

            1 ∀x;x=y⇒(x=z⇒y=z) Gen(x,I1)
            2 ∀x;x=y⇒(x=z⇒y=z)⇒x+0=y⇒(x+0=z⇒y=z) Ax4(x,x+0,x=y⇒(x=z⇒y=z))
            3 x+0=y⇒(x+0=z⇒y=z) MP(1,2)
            4 ∀y x+0=y⇒(x+0=z⇒y=z) Gen(y,2)
            5 ∀y x+0=y⇒(x+0=z⇒y=z)⇒ x+0=x⇒(x+0=z⇒x=z) Ax4(y,x,x+0=y⇒(x+0=z⇒y=z))
            6 x+0=x⇒(x+0=z⇒x=z) MP(4,5)
            7 x+0=z⇒x=z MP(I5,6)
            8 ∀z x+0=z⇒x=z Gen(z,7)
            9 (∀z x+0=z⇒x=z)⇒( x+0=x⇒x=x) Ax4(z,x,x+0=z⇒x=z))
            10 ( x+0=x⇒x=x) MP(8,9)
            11 x=x MP(-5,10)
            12 ∀z x=y⇒(x=z⇒y=z) Gen(z,I1)
            13 ∀z x=y⇒(x=z⇒y=z)⇒x=y⇒(x=x⇒y=x) Ax4(z,x,x=y⇒(x=z⇒y=z))
            14 x=y⇒(x=x⇒y=x) MP(12,13)
            15 x=y⇒(x=x⇒y=x)⇒(x=y⇒x=x)⇒(x=y⇒y=x) Ax2(x=y,x=x,y=x)
            16 (x=y⇒x=x)⇒(x=y⇒y=x) MP(14,15)
            17 x=x⇒(x=y⇒x=x) Ax1(x=x,x=y)
            18 x=y⇒x=x MP(11,17)
            19 x=y⇒y=x MP(18,16)
            20 ∀x (x+y')=(x+y)' Gen(x,I6)
            21 ∀x (x+y')=(x+y)'⇒(0'+y')=(0'+y)' Ax4(x,0', (x+y')=(x+y)')
            22 (0'+y')=(0'+y)' MP(20,21)
            23 ∀y (0'+y')=(0'+y)' Gen(y,22)
            24 ∀(0'+y')=(0'+y)'⇒(0'+0')=(0'+0)' Ax4(y,0,(0+y')=(0+y)')
            25 (0'+0')=(0'+0)' MP(23,24)
            26 ∀x (x+0)=x Gen(y,I5)
            27 ∀x (x+0)=x ⇒ (0'+0)=0' Ax4(x,0',(x+0)=x)
            28 (0'+0)=0' MP(26,27)
            29 ∀x (x=y⇒x'=y') Gen(x,I2)
            30 ∀x (x=y⇒x'=y')⇒ ((0'+0)=y⇒(0'+0)'=y') Ax4((x,0'+0,x=y⇒x'=y'))
            31 ((0'+0)=y⇒(0'+0)'=y') MP(29,30)
            32 ∀y ((0'+0)=y⇒(0'+0)'=y') Gen(y,31)
            33 ∀y (0'+0)=y⇒(0'+0)'=y')⇒((0'+0)=0'⇒(0'+0)'=0'') Ax4(y,0',(0'+0)=y⇒(0'+0)'=y')
            34 ((0'+0)=0'⇒(0'+0)'=0'') MP(32,33)
            35 (0'+0)'=0'' MP(28,34)
            36 ∀x x=y⇒y=x Gen(x,19)
            37 (∀x x=y⇒y=x)⇒( (0'+0')=y⇒y=(0'+0')) Ax4(x,(0'+0')(∀x x=y⇒y=x))
            38 (0'+0')=y⇒y=(0'+0') MP(36,37)
            39 ∀y (0'+0')=y⇒y=(0'+0') Gen(y,38)
            40 ∀y (0'+0')=y⇒y=(0'+0') ⇒ ((0'+0')=(0'+0)'⇒(0'+0)'=(0'+0') Ax4(y,(0'+0)',(0'+0')=y⇒y=(0'+0'))
            41 ((0'+0')=(0'+0)'⇒(0'+0)'=(0'+0') MP(39,40)
            42 (0'+0)'=(0'+0') MP(25,41)
            43 (∀z x=y⇒(x=z⇒y=z)) ⇒ x=y⇒(x=0''⇒y=0'') Ax4(z,0'',x=y⇒(x=z⇒y=z))
            44 x=y⇒(x=0''⇒y=0'') MP(12,43)
            45 ∀x x=y⇒(x=0''⇒y=0'') Gen(x,44)
            46 ∀x x=y⇒(x=0''⇒y=0'')⇒( (0'+0)' =y⇒((0'+0)' =0''⇒y=0'')) Ax4(x,x,(0'+0)',x=y⇒(x=0''⇒y=0'') )
            47 (0'+0)' =y⇒((0'+0)' =0''⇒y=0'') MP(45,46)
            48 ∀y (0'+0)'=y⇒((0'+0)' =0''⇒y=0'') Gen(y,47)
            49 ∀y (0'+0)' =y⇒((0'+0)' =0''⇒y=0'')⇒
            ((0'+0)' =(0'+0')⇒((0'+0)' =0''⇒(0'+0')=0'')) Ax4( y,(0'+0'),
            (0'+0)' =y⇒((0'+0)' =0''⇒y=0''),)
            50 (0'+0)' =(0'+0')⇒((0'+0)' =0''⇒(0'+0')=0'') MP(48,49)
            51 (0'+0)' =0''⇒(0'+0')=0'' MP(42,50)
            52 (0'+0')=0'' MP(35,51)

            HTH

            Comment


              #7
              You could always ask Donald.

              Threaded taught him everything!

              Comment


                #8
                I've worked it out

                x + y > 0 implies

                x > -y

                Assuming x > 0 then -y < 0 which is equivalent to y >0

                QED

                I'm alright Jack

                Comment


                  #9
                  'fraid not

                  Comment


                    #10
                    Originally posted by BlasterBates
                    x > -y

                    Assuming x > 0 then -y < 0
                    So if x =9 and y=-8?

                    Comment

                    Working...
                    X